首页> 外文OA文献 >High Field/High Frequency Saturation Transfer Electron Paramagnetic Resonance Spectroscopy: Increased Sensitivity to Very Slow Rotational Motions
【2h】

High Field/High Frequency Saturation Transfer Electron Paramagnetic Resonance Spectroscopy: Increased Sensitivity to Very Slow Rotational Motions

机译:高场/高频饱和转移电子顺磁共振光谱:对非常慢的旋转运动的灵敏度增加

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Saturation transfer electron paramagnetic resonance (ST-EPR) spectroscopy has been employed to characterize the very slow microsecond to millisecond rotational dynamics of a wide range of nitroxide spin-labeled proteins and other macromolecules in the past three decades. The vast majority of this previous work has been carried out on spectrometers that operate at X-band (∼9 GHz) microwave frequency with a few investigations reported at Q-band (∼34 GHz). EPR spectrometers that operate in the 94–250-GHz range and that are capable of making conventional linear EPR measurements on small aqueous samples have now been developed. This work addresses potential advantages of utilizing these same high frequencies for ST-EPR studies that seek to quantitatively analyze the very slow rotational dynamics of spin-labeled macromolecules. For example, the uniaxial rotational diffusion (URD) model has been shown to be particularly applicable to the study of the rotational dynamics of integral membrane proteins. Computational algorithms have been employed to define the sensitivity of ST-EPR signals at 94, 140, and 250 GHz to the correlation time for URD, to the amplitude of constrained URD, and to the orientation of the spin label relative to the URD axis. The calculations presented in this work demonstrate that these higher microwave frequencies provide substantial increases in sensitivity to the correlation time for URD, to small constraints in URD, and to the geometry of the spin label relative to the URD axis as compared with measurements made at X-band. Moreover, the calculations at these higher frequencies indicate sensitivity to rotational motions in the 1–100-ms time window, particularly at 250 GHz, thereby extending the slow motion limit for ST-EPR by two orders of magnitude relative to X- and Q-bands.
机译:在过去的三十年中,已经使用饱和转移电子顺磁共振(ST-EPR)光谱来表征各种硝基氧自旋标记的蛋白质和其他大分子的非常慢的微秒至毫秒的旋转动力学。以前的绝大多数工作都是在以X波段(〜9 GHz)微波频率工作的光谱仪上进行的,据报道有一些在Q波段(〜34 GHz)的研究。现在,已经开发了工作在94–250 GHz范围内并且能够对小型含水样品进行常规线性EPR测量的EPR光谱仪。这项工作解决了利用相同的高频进行ST-EPR研究的潜在优势,这些研究试图定量分析自旋标记大分子的非常慢的旋转动力学。例如,单轴旋转扩散(URD)模型已被证明特别适用于整体膜蛋白的旋转动力学研究。已经采用计算算法来定义94、140和250 GHz的ST-EPR信号对URD的相关时间,受约束的URD的幅度以及自旋标签相对于URD轴的方向的敏感性。这项工作中提出的计算结果表明,与X处的测量值相比,这些更高的微波频率大大提高了对URD的相关时间,对URD中的小约束以及相对于URD轴的自旋标签几何形状的敏感性。 -带。此外,在这些较高频率下的计算表明,对1-100毫秒时间窗内的旋转运动(特别是在250 GHz频率下)敏感,从而将ST-EPR的慢动作极限相对于X-和Q-扩大了两个数量级。乐队。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号